Bài 5: Giải bài toán bằng cách lập hệ phương trình

WJ
Tìm số tự nhiên có hai chữ số, biết rằng ba lần chữ số hàng chục lớn hơn chữ số hàng đơn vị 6 đơn vị, và nếu viết hai chữ số ấy theo thứ tự ngược lại thì được một số mới (có hai chữ số) lớn hơn số cũ 36 đơn vị. Số đó là?
NT
22 tháng 2 2021 lúc 20:30

Gọi số cần tìm là \(\overline{ab}\)(Điều kiện: \(\left\{{}\begin{matrix}a,b\in N\\0< a\le10\\0\le b\le10\end{matrix}\right.\))

Vì ba lần chữ số hàng chục lớn hơn chữ số hàng đơn vị là 6 đơn vị nên ta có phương trình: \(3a-b=6\)(1)

Vì khi viết hai chữ số ấy theo thứ tự ngược lại thì được một số mới lớn hơn số cũ là 36 đơn vị nên ta có phương trình: \(10b+a-\left(10a+b\right)=36\)

\(\Leftrightarrow10b+a-10a-b=36\)

\(\Leftrightarrow-9a+9b=36\)

\(\Leftrightarrow a-b=-4\)(2)

Từ (1) và (2) ta lập được hệ phương trình:

\(\left\{{}\begin{matrix}3a-b=6\\a-b=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2a=10\\a-b=-4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=5\\b=a+4=5+4=9\end{matrix}\right.\)(thỏa ĐK)

Vậy: Số cần tìm là 59

Bình luận (0)

Các câu hỏi tương tự
HL
Xem chi tiết
NK
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
HY
Xem chi tiết
H24
Xem chi tiết
NH
Xem chi tiết
MS
Xem chi tiết
HT
Xem chi tiết