Bài 5: Giải bài toán bằng cách lập hệ phương trình

HY

tìm 1 số tự nhiên có 2 chữ số , biết rằng số đó gấp 4 lần tổng các chữ số của nó . Nếu viết 2 chữ số của nó theo thứ tự ngược lại thì được số mới lớn hơn số ban đầu 36 đơn vị 

 

NC
4 tháng 2 2021 lúc 10:17

Gọi số tự nhiên đó là ab (ab >10). Theo đề bài ta có :

Số đó gấp 4 lần tổng các chữ số của nó nên ta có phương trình: 

\(ab=4\left(a+b\right)\Leftrightarrow10a+b=4a+4b\) \(\Leftrightarrow10a-4a+b-4b=0\Leftrightarrow6a-3b=0\) ⇔  2a-b=0(1)

Nếu viết 2 chữ số của nó theo thứ tự ngược lại thì được số mới lớn hơn số ban đầu 36 đơn vị nên ta có phương trình :

\(ba-ab=36\Leftrightarrow10b+a-10a-b=36\)

\(\Leftrightarrow9b-9a=36\Leftrightarrow b-a=4\left(2\right)\)

Từ (1) và (2) ta có hệ phương trình: \(\left\{{}\begin{matrix}2a-b=0\left(1\right)\\b-a=4\left(2\right)\end{matrix}\right.\)

Cộng từng vế của (1) và (2) ta được : a=4 Thay vào (2) ta được:

\(b-4=4\Leftrightarrow b=8\) ⇒ab=48. Vậy...

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
WJ
Xem chi tiết
HL
Xem chi tiết
NK
Xem chi tiết
HL
Xem chi tiết
BH
Xem chi tiết
LT
Xem chi tiết
NH
Xem chi tiết
MS
Xem chi tiết