Để biểu thức nguyên
\(\Leftrightarrow x-1⋮x+2\)
\(\Leftrightarrow x+2-3⋮x+2\)
MÀ \(x+2⋮x+2\)
\(\Rightarrow3⋮x+2\)
\(\Rightarrow x+2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
Tìm nốt
Để \(\frac{x-1}{x+2}\inℤ\)
=> \(x-1⋮x+2\)
=> \(x+2-3⋮x+2\)
Ta có : Vì \(x+2⋮x+2\)
=> \(-3⋮x+2\)
=> \(x+2\inƯ\left(-3\right)\)
=> \(x+2\in\left\{\pm1;\pm3\right\}\)
Lập bảng xét các trường hợp :
x + 2 | 1 | - 1 | 3 | - 3 |
x | - 1 | - 3 | 1 | - 5 |
Vậy \(\frac{x-1}{x+2}\inℤ\Leftrightarrow x\in\left\{-1;-3;1;-5\right\}\)
#)Giải :
\(\frac{x-1}{x+2}=\frac{x+2-3}{x+2}=\frac{x+2}{x+2}+\frac{-3}{x+2}=1+\frac{-3}{x+2}\)
Xét Ư(-3) rồi xét các trường hợp