MH

+) Tìm số nguyên tố p,q sao cho: \(\left\{{}\begin{matrix}q^3+1⋮p^2\\p^6-1⋮q^2\end{matrix}\right.\)

+) Giả sử: a,b∈N sao cho \(p=\dfrac{b}{4}\sqrt{\dfrac{2a-b}{2a+b}}\) là số nguyên tố. Tìm max p

TD
16 tháng 12 2022 lúc 10:29

Ý thứ hai: Từ giả thiết $p$ nguyên tố suy ra $b$ chẵn (vì $b$ phải chia hết cho $4$), ta đặt $b=2 c$ thì:

$p=\dfrac{c}{2} \sqrt{\dfrac{a-c}{b-c}} \Leftrightarrow \dfrac{4 p^2}{c^2}=\dfrac{a-c}{a+c}$.

Đặt $\dfrac{2 p}{c}=\dfrac{m}{n}$, với $(m, n)=1$ $\Rightarrow\left\{\begin{aligned} &a-c=k m^2 \\ &a+c=k n^2\\ \end{aligned}\right. \Rightarrow 2 c=k\left(n^2-m^2\right)$ và $4 p n=k m\left(n^2-m^2\right).$

+ Nếu $m$, $n$ cùng lẻ thì $4 p n=k m\left(n^2-m^2\right) \, \vdots \, 8 \Rightarrow p$ chẵn, tức là $p=2$.

+ Nếu $m$, $n$ không cùng lẻ thì $m$ chia $4$ dư $2$. (do $2p$ không là số chẵn không chia hết cho $4$ và $\dfrac{2 p}{c}$ là phân số tối giản). Khi đó $n$ là số lẻ nên $n^2-m^2$ là số lẻ nên không chia hết cho $4$ suy ra $k$ là số chia hết cho $2$.

Đặt $k=2 r$ ta có $2 p n=r m\left(n^2-m^2\right)$ mà $\left(n^2-m^2, n\right)=1 \Rightarrow r \, \vdots \, n$ đặt $r=n s$ ta có $2 p=s(n-m)(n+m) m$ do $n-m, n+m$ đều là các số lẻ nên $n+m=p$, $n-m=1$, suy ra $s, m \leq 2$ và $(m ; n)=(1 ; 2)$ hoặc $(2 ; 3)$.

Trong cả hai trường họp đều suy ra $p \leq 5$.

Với $p=5$ thì $m=2$, $n=3$, $s=1$, $r=3$, $k=6$, $c=15$, $b=30$, $a=39$.

Bình luận (1)
TD
16 tháng 12 2022 lúc 11:41

Ý thứ nhất: 

TH1: Nếu $p=3$, ta có $3^6-1=2^3 .7 .11 \, \vdots \, q^2$ hay $q^2 \, \big| \, 2^3 .7 .11$ nên $q=2$.

TH2: Nếu $p \neq 3$, ta có $p^2 \, \big| \, (q+1)\left(q^2-q+1\right)$.

Mà $\left(q+1, q^2-q+1\right)=(q+1,3)=1$ hoặc $3$. Suy ra hoặc $p^2  \, \big| \,  q+1$ hoặc $p^2  \, \big| \,  q^2-q+1$ nên $p < q$.

+ Nếu $q=p+1$ ta có $p=2$, $q=3$.

+ Nếu $q \geq p+2$. 

Ta có $p^6-1=(p^3)^2-1=(p^3-1)(p^3+1)$ nên $q^2  \, \big| \, (p-1)(p+1).(p^2-p+1).(p^2+p+1)$.

Do $(q, p+1)=(q, p-1)=1$ và $\left(p^2-p+1, p^2+p+1\right)=\left(p^2+p+1,2 p\right)=1$ nên ta có hoặc $q^2  \, \big| \,  p^2+p+1$ hoặc $q^2  \, \big| \,  p^2-p+1$.

Mà $q \geq p+2$ nên $q^2 \geq(p+2)^2>p^2+p+1>p^2-p+1$.

Vậy $(p, q)=(2,3) ; \, (3,2)$.

Bình luận (1)
DD
21 tháng 12 2022 lúc 19:42

ko biết làm thế nào bn thông cảm nhégianroigianroi

Bình luận (0)

Các câu hỏi tương tự
MH
Xem chi tiết
TL
Xem chi tiết
MH
Xem chi tiết
MH
Xem chi tiết
DY
Xem chi tiết
LP
Xem chi tiết
HD
Xem chi tiết
TK
Xem chi tiết
TM
Xem chi tiết