HM

Tìm số nguyên tố p sao cho 2p+1, 4p+1 cùng là số nguyên tố

NH
12 tháng 9 2023 lúc 14:41

 Dùng phương pháp đánh giá em nhá.

+ Nếu p = 2 ta có: 2p + 1 = 5 (thỏa mãn);   4p + 1 = 9 (loại)

+ Nếu p = 3 ta có: 2p + 1 = 7 (thỏa mãn);   4p + 1 = 13 (thỏa mãn)

+ Nếu p > 3 mà p là số nguyên tố nên p có dạng:

   p = 3k + 1; p = 3k + 2 (k \(\in\)N*)

Với p = 3k + 1 ⇒ 2p + 1 = 2.(3k+1) + 1 = 6k+3 ⋮ 3 (loại)

Với p = 3k + 2 ⇒ 4p + 1 = 4.(3k + 2) + 1 = 12k + 9 ⋮ 3(loại)

Từ những phân tích trên ta có: p = 3 

Kết luận với p = 3 thì p; 2p + 1; 4p + 1 đồng thời là số nguyên tố.

 

Bình luận (0)
H9
12 tháng 9 2023 lúc 14:51

Gọi d là ƯCLN(2p + 1; 4p + 1) 

⇒ 2p + 1 ⋮ d và 4p + 1 ⋮ d 

⇒ 2 x (2p + 1) ⋮ d và 4p + 1 ⋮ d

⇒ 4p + 2 ⋮ d và 4p + 1 ⋮ d

⇒ (4p + 2) - (4p + 1) ⋮ d

⇒ 4p + 2 - 4p - 1 ⋮ d

⇒ 2 - 1 ⋮ d

⇒ 1 ⋮ d

⇒ d = 1

Vậy 2p + 1 và 4p + 1 là 2 số nguyên tố cùng nhau 

Bình luận (0)
LP
12 tháng 9 2023 lúc 15:00

Cùng là số nguyên tố nó khác với nguyên tố cùng nhau bạn ơi.

Xét \(p=2\). Khi đó \(4.2+1=9\) không là SNT.

Xét \(p=3\). Khi đó \(2.3+1=7\) và \(4.3+1=13\) là các SNT.

Xét \(p>3\). Khi đó \(p=3k+1\) hoặc \(p=3k+2\).

 Nếu \(p=3k+1\) thì \(2p+1=2\left(3k+1\right)+1=6k+3⋮3\)  nên \(2p+1\) không phải là SNT.

 Nếu \(p=3k+2\) thì \(4p+1=4\left(3k+2\right)+1=12k+9⋮3\) nên \(4p+1\) không phải là SNT.

Vậy nếu p là SNT lớn hơn 3 thì 1 trong 2 số \(2p+1,4p+1\) không là SNT. Do đó SNT p duy nhất thỏa mãn đề bài là \(p=3\)

Bình luận (0)

Các câu hỏi tương tự
HM
Xem chi tiết
TL
Xem chi tiết
NN
Xem chi tiết
CN
Xem chi tiết
NA
Xem chi tiết
HV
Xem chi tiết
PB
Xem chi tiết
ND
Xem chi tiết
TP
Xem chi tiết