Ta co: A=\(\frac{10}{x^2+1}\) x thuoc Z
=>\(x^2\) +1 U(10)={-1;1;-2;2;-5;5;-10;10}
=>\(x^2\)={-2;0;-3;1;-6;4;-11;9}
=>x={0;1;2;3}
Ta co: A=\(\frac{10}{x^2+1}\) x thuoc Z
=>\(x^2\) +1 U(10)={-1;1;-2;2;-5;5;-10;10}
=>\(x^2\)={-2;0;-3;1;-6;4;-11;9}
=>x={0;1;2;3}
tìm số hữu tỉ x để phân thức \(\frac{10}{x^2+1}\) có giá trị là số nguyên
tìm các số hữu tỉ X để biến thức A=\(\frac{5}{x^2+1}\) nhận giá trị là một số nguyên
tìm số hữu tỉ x để phân thức 15/x^2+3 có giá trị là số nguyên
giúp mình với
Tìm số hữu tỉ x để biểu thức P = \(\dfrac{x^2-4x}{x^2+2}\) có giá trị là một số nguyên dương.
Tìm các giá trị nguyên của x để phân thức M có giá trị là 1 số nguyên:
\(M=\frac{10\cdot x^2-7\cdot x-5}{2\cdot x-3}\)
3) Cho phân thức \(\frac{3x+3}{x^2-1}\)
a,tìm điều kiện xác định của x để giá trị của phân thức được xác định.Tìm giá trị của x để phân thức có giá trị bằng -2
b,tìm giá trị của x để phân thức có giá trị là số nguyên.
a, Tìm giá trị nguyên của x để biểu thức A = \(\frac{^{x^2+4}}{x-1}\)( với x khác 1) có giá trị là 1 số nguyên
b, Cho các số a,b,c khác 0 thỏa mãn: a+b+c = 0 và biểu thức:
P=\(\frac{ab}{a^2+b^2-c^2}\)+\(\frac{bc}{b^2+c^2-a^2}\)+\(\frac{ca}{c^2+a^2-b^2}\)
Chứng minh rằng: Giá trị của P khi được xác định luôn là một số hữu tỉ
tìm x thuộc tập hợp số hữu tỉ để biểu thức có quá trị nguyên 10/(x2 +1)
Tìm điều kiện để phân thức \(\frac{2x-2}{x^2-x}\) được xác định
a) Tính giá trị của phân thức tại x=3 và x=0
b) Tính giá trị của x để phân thức có giá trị bằng 2
c) Tìm giá trị của x để phân thức có giá trị là số nguyên