Tìm số hạng không chứa x trong khai triển nhị thức Newtơn P x = x 2 + 1 x 15
A. 4000
B. 2700
C. 3003
D. 3600
Trong khai triển nhị thức ( x + 1 x ) n hệ số của số hạng thứ 3 lớn hơn hệ số của số hạng thứ 2 là 35. Tìm số hạng không chứa x trong khai triển nói trên.
A. 225
B. 252
C. 522
D. 525
Cho nhị thức x + 1 x n , x ≠ 0 trong tổng số các hệ số của khai triển nhị thức đó là 1024. Khi đó số hạng không chứa x trong khai triển nhị thức đã cho bằng
A. 252
B. 125
C. -252
D. 525
Tìm số hạng không chứa x trong khai triển nhị thức Newton của P: P = x + 1 x 2 3 − x + 1 3 − x − 1 x − x 10 với x > 0 , x ≠ 1.
A. 200.
B. 100.
C. 210.
D. 160.
Tìm số hạng không chứa x trong khai triển nhị thức Newton x + 1 x 2 9 .
A. C 9 2
B. C 9 3
C. C 9 6
D. 1
Tìm số hạng không chứa x trong khai triển nhị thức Newton x − 2 x 2 21 , x ≠ 0
A. 2 7 C 21 7
B. 2 8 C 21 8
C. − 2 8 C 21 8
D. − 2 7 C 21 7
Tìm số hạng không chứa x trong khai triển nhị thức Newton x − 2 x 2 21 , x ≠ 0 , n ∈ N *
A. 2 7 C 21 7
B. 2 8 C 21 8
C. − 2 8 C 21 8
D. − 2 7 C 21 7
Tổng các hệ số nhị thức Niu – tơn trong khai triển ( 1 + x ) 3 n bằng 64. Số hạng không chứa x trong khai triển ( 2 n x + 1 2 n x 2 ) 3 n là
A. 360
B. 210
C. 250
D. 240
Trong khai triển nhị thức: x + 8 x 3 8 . Số hạng không chứa x là:
A. 1792
B. 1700
C. 1800
D. 1729