\(5^2\equiv1\left(mod12\right)\Rightarrow5^{2010}\equiv1\left(mod12\right)< 1>.\)
\(7^2\equiv1\left(mod12\right)\Rightarrow7^{10}\equiv1\left(mod12\right)< 2>.\)
\(Từ< 1>và< 2>\Rightarrow5^{2010}+7^{10}\equiv2\left(mod12\right).\)
\(\Rightarrow5^{2010}+7^{10}:12dư2.\)
Vậy \(5^{2010}+7^{10}:12dư2\)