Đặt \(A=1+2+2^2+2^3+......+2^{2015}\)
\(\Rightarrow2A=2+2^2+2^3+2^4+......+2^{2016}\)
\(\Leftrightarrow2A-A=1-2^{2016}\)( sử dụng triệt tiêu các số giống nhau còn lại \(1\)và \(2^{2016}\))
Ta thực hiên phép chia :
\(A=\frac{2^{2018}}{2^{2016}-1}\)
\(\Rightarrow A+1=\frac{2^{2018}}{2^{2016}}\)
Vậy số dư phép chia \(2^{2018}\)cho \(1+2+2^2+2^3+.....+2^{2015}\)là 1