BC

Tìm số dư của phép chia 22018 cho 1+2+22+23+...+22015

AL
19 tháng 3 2019 lúc 12:37

Đặt  \(A=1+2+2^2+2^3+......+2^{2015}\)

\(\Rightarrow2A=2+2^2+2^3+2^4+......+2^{2016}\)

\(\Leftrightarrow2A-A=1-2^{2016}\)( sử dụng triệt tiêu các số giống nhau còn lại \(1\)và \(2^{2016}\))

Ta thực hiên phép chia :

\(A=\frac{2^{2018}}{2^{2016}-1}\)

\(\Rightarrow A+1=\frac{2^{2018}}{2^{2016}}\)

Vậy số dư phép chia \(2^{2018}\)cho \(1+2+2^2+2^3+.....+2^{2015}\)là 1

Bình luận (0)

Các câu hỏi tương tự
MB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
TH
Xem chi tiết
DC
Xem chi tiết
TU
Xem chi tiết
BN
Xem chi tiết
H24
Xem chi tiết
BA
Xem chi tiết
PT
Xem chi tiết