pt tương đương với: \(y^2=\left(x^2+8x\right)\left(x^2+8x+7\right)\)
Đặt \(z=x^2+8x\Rightarrow y^2=z^2+7zhay4y^2=\left(2z+7\right)^2hay\left(2z-2y+7\right)\left(2z+2y+7\right)=49\)
chị có thể xạy ra cạc trường hợp sau:
\(TH1:\hept{\begin{cases}2z-2y+7=1\\2z+2y=49\end{cases}\Leftrightarrow\hept{\begin{cases}y=12\\z=9\end{cases}}}\)
\(TH2:\hept{\begin{cases}2z-2y+7=49\\2z+2y+7=1\end{cases}\Leftrightarrow\hept{\begin{cases}y=-12\\z=9\end{cases}}}\)
Trong cạ 2 TH trên ta cóa:
\(z=9\Leftrightarrow x^2+8x=9\Leftrightarrow\orbr{\begin{cases}x=1\\x=-9\end{cases}}\)
\(TH3:\hept{\begin{cases}2z-2y+7=-1\\2z+2y+7=-49\end{cases}\Leftrightarrow\hept{\begin{cases}y=-12\\z=-16\end{cases}}}\)
\(TH4:\hept{\begin{cases}2z-2y+7=-49\\2z+2y+7=-1\end{cases}\Leftrightarrow\hept{\begin{cases}y=12\\z=-16\end{cases}}}\)
Trong cạ 2 TH trên ta cóa:
\(z=-16\Leftrightarrow x^2+8x=-16\Leftrightarrow\left(x+4\right)^2=0\Leftrightarrow x=-4\)
\(TH5:2z-2y+7=2z+2y+7\Leftrightarrow y=z=0\)
Khi đó ta cóa: \(x^2+8x=-16\Leftrightarrow\orbr{\begin{cases}x=0\\x=-8\end{cases}}\)
\(TH6:2z-2y+7=2z+2y+7=-7\Leftrightarrow y=0;z=-7\)
Khi đó ta cóa: \(x^2+8x=-7\Leftrightarrow\left(x+1\right)\left(x+7\right)=0\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-7\end{cases}}\)
Vậy pt đã cho có các nghiệm nguyên \(\left(x;y\right)=\left(1;12\right),\left(-9;12\right),\left(1;-12\right),\left(0;0\right),\left(-8;0\right),\left(-1;0\right),\left(-7;0\right),\left(-4;12\right),\left(-4;-12\right)\)