+Xét \(x=y=z=0\)
+ Xét trong x;y;z có 1 số bằng 0
+ Xét \(x;y;z\ne0\)
Giả sử \(0< x\le y\le z\)
\(x+y+z=xyz\)
\(\Leftrightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=1\le\frac{3}{x^2}\)
\(\Rightarrow x^2\le3\)
\(\Rightarrow x=1\)
Thay x=1 ta được:
\(\frac{1}{y}+\frac{1}{z}+\frac{1}{yz}\le\frac{3}{y}\)
\(\Rightarrow y\le3\)
\(\Rightarrow y\in\left\{1;2;3\right\}\)
Bạn tự giải tiếp nhé
Giả sử 1<=x<=y<=z
=> xyz<=x+y+z
=>xyz<=z+z+z
=>xyz<=3z
=>xy\(\in\){1;2;3}
+)xy=1 => x=y=1 =>1+1+z=z (vô lí)
+) xy=2 => (x;y)=(1;2) ; (2;1)
Mà x<=y
=>(x;y)=(1;2)
Mà xy<=3
=>z=3 (t/m)
+) xy=3 => (x;y)=(1;3);(3;1)
Mà x<=y
=>(x;y)=(1;3)
=>z=3 (vô lí)
Vậy x=1; y=2 ; z=3