Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tìm a để bất phương trình sau có ít nhất 1 nghiệm nguyên:
\(x^2-x+a\left(1-a\right)\le0\)
Tập nghiệm của bất phương trình\(\left(x+2\right)\sqrt{x^2-9}\le0\)
Cho hệ bất phương trình : \(\hept{\begin{cases}x^2-6x+5\le0\\x^2-2\left(a+1\right)x+a^2+1\le0\end{cases}}\) Để hệ bất phương trình có nghiệm , giá trị của a là :
Tìm m để hệ bất phương trình \(\left\{{}\begin{matrix}x^2-1\le0\\x-m>0\end{matrix}\right.\)có nghiệm
Tìm m để hệ bất phương trình \(\left\{{}\begin{matrix}x-1>0\\x^2-2mx+1\le0\end{matrix}\right.\)có nghiệm
gọi S là tập nghiệm của bất phương trình \(x^2-\left(2m-6\right)x+m^2-6m+5\le0\). tìm tất cả các giá trị của m sao cho (3;5) \(\subset\) S.
Tìm m để hệ bất phương trình \(\left\{{}\begin{matrix}2x+m< 0\\3x^2-x-4\le0\end{matrix}\right.\)vô nghiệm
1) Tìm tập nghiệm S của bất phương trình | 2x+1| > x+1
2) Tìm tất cả giá trị của tham số m để bất phương trình -x^2+x-m>0 vô nghiệm
Giải bất phương trình \(\dfrac{x^2-7x+12}{x^2-4}\le0\)