HT

Tìm n để:n^2+n+4 chia hết cho n+1

KL
3 tháng 6 2023 lúc 9:33

Ta có:

\(n^2+n+4=\left(n^2+n\right)+4=n\left(n+1\right)+4\)

Để \(\left(n^2+n+4\right)⋮\left(n+1\right)\) thì \(4⋮\left(n+1\right)\) 

\(\Rightarrow n+1\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\)

\(\Rightarrow n\in\left\{-5;-3;-2;0;1;3\right\}\)

Bình luận (0)
H24

n2+n+4 ⋮ n+1

\(\Rightarrow\) n. n + n.1 +4  ⋮ n+1

\(\Rightarrow\) n . ( n+1) + 4 \(⋮\) n+1

Để n . ( n+1) +4 \(⋮\) 4 thì 4 \(⋮\) n+1 { Vì n . ( n+1) \(⋮\) 4}

\(\Rightarrow\) n +1 \(\in\) ( 4 )

\(\Rightarrow\) n+ 1 \(\in\) { \(\pm\) 1; \(\pm\)2; \(\pm\) 4}

\(\Rightarrow\) n \(\in\) { 0; -2 ; 1 ; -3 ; 3 ;-5}

Bình luận (0)