a) Ta có: \(8^n:2^n=16^{2011}\)
\(\Leftrightarrow4^n=\left(4^2\right)^{2011}\)
\(\Leftrightarrow n=4022\)
b) Ta có: \(2^n+2^{n+3}=144\)
\(\Leftrightarrow2^n\left(1+2^3\right)=144\)
\(\Leftrightarrow2^n=16\)
hay n=4
\(8^n\div2^n=16^{2011}\)
\(\left(8\div2\right)^n=\left(4^2\right)^{2011}\)
\(4^n=4^{4022}\)
\(\Rightarrow n=4022\)
mình nghĩ ý b là
\(2^n+2^{n+3}=144\)
\(2^n+2^n\cdot2^3=144\)
\(2^n\left(1+8\right)=144\)
\(2^n\cdot9=144\)
\(2^n=16\)
\(2^n=2^4\)
\(\Rightarrow n=4\)