Gọi số tự nhiên có 2 chữ số cần tìm có dạng là \(X=\overline{ab}\left(a\ne0\right)\)
Khi viết thêm số 0 vào giữa hai chữ số hàng chục và hàng đơn vị thì ta được số mới là \(\overline{a0b}=100a+b\)
\(\overline{ab}=10a+b\)
Số mới gấp 7 lần số ban đầu nên ta có: \(100a+b=7\left(10a+b\right)\)
=>\(100a+b=70a+7b\)
=>30a=6b
=>\(b=5a\)
mà \(a\in\left\{1;2;3;4;5;6;7;8;9\right\};b\in\left\{0;1;2;3;4;5;6;7;8;9\right\}\)
nên b=5 và a=1
Vậy: Số cần tìm là 15
Đúng 2
Bình luận (0)