Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho \(x;y\ge0\)\(.\)Tìm Min và Max
\(A=\frac{\left(x-y\right)\left(1-xy\right)}{\left(x^2+1\right)\left(y^2+1\right)}\)
Cho: \(A=\frac{\left(x^2+y\right)\left(\frac{1}{4}+y\right)+x^2y^2+\frac{3}{4}\left(\frac{1}{3}+y\right)}{x^2y^2+1+\left(x^2-y\right)\left(1-y\right)}\)
a, Tìm tập xác định của A
b, Cmr giá trị của A không phụ thuộc vào x
c, Tìm Min A và giá trị tương ứng của y
Cho x,y thỏa mãn \(x^2+2xy+7\left(x+y\right)+2y^2+10=0\)
Tìm min max của S= x + y + 1
Cho \(\left(x^2-y^2\right)^2+4x^2y^2+x^2-2y^2=0\)
TÌm MIN và MAX của biểu thức \(C=x^2+y^2\)
Tìm min, max của \(A=\frac{x^4+1}{\left(x^2+1\right)^2}\)
Min:
\(A=\frac{x^4+1+2x^2-2x^2}{x^4+2x^2+1}=1-\frac{2x^2}{\left(x^2+1\right)^2}\)
Nhận xét: \(\frac{2x^2}{\left(x^2+1\right)^2}\ge0\)
=> \(1-\frac{2x^2}{\left(x^2+1\right)^2}\ge1\)
Dấu = <=> x=0
Max:
Đặt x2=a
Đặt x-1=y
Đặt 1/y=z
Câu này nâng cao lắm, chắc mình chưa cần giải đâu.
Ra Min=1/2 <=>x=1
cho x>0 , y>0 , x+y =2012
a) Tìm Max \(B=\frac{2x^2+8xy+2y^2}{x^2+2xy+y^2}\)
b) Tìm Min \(C=\left(1+\frac{2012}{x}\right)^2+\left(1+\frac{2012}{y}\right)^2\)
Cho \(x;y;z>0\)Tìm Min và Max
\(A=\frac{\left(x-y\right)\left(1-xy\right)}{\left(1+x^2\right)\left(1+y^2\right)}\)
Cho \(x^2+y^2\le x+y\) . Tìm Min và Max của Q=x+2y
cho \(\left(x+y\right)^2+7\left(x+y\right)+y^2+10=0.\)
Tìm Max,Min x+y+1