H24

Tìm min :

N = \(\dfrac{3x^2+2x+5}{4x^2+4x+1}\)

NL
17 tháng 7 2021 lúc 9:21

\(N=\dfrac{57x^2+38x+95}{19\left(4x^2+4x+1\right)}=\dfrac{14\left(4x^2+4x+1\right)+\left(x^2-18x+81\right)}{19\left(4x^2+4x+1\right)}=\dfrac{14}{19}+\left(\dfrac{x-9}{2x+1}\right)^2\ge\dfrac{14}{19}\)

\(N_{min}=\dfrac{14}{19}\) khi \(x=9\)

Bình luận (1)
NL
17 tháng 7 2021 lúc 10:27

Nếu đặt ẩn: \(N=\dfrac{3x^2+2x+5}{\left(2x+1\right)^2}\)

Đặt \(2x+1=t\Leftrightarrow x=\dfrac{t-1}{2}\)

\(\Rightarrow N=\dfrac{3\left(\dfrac{t-1}{2}\right)^2+2\left(\dfrac{t-1}{2}\right)+5}{t^2}=\dfrac{3t^2-2t+19}{4t^2}=\dfrac{19}{4t^2}-\dfrac{1}{2t}+\dfrac{3}{4}\)

\(N=\dfrac{19}{4}\left(\dfrac{1}{t}-\dfrac{1}{19}\right)^2+\dfrac{14}{19}\ge\dfrac{14}{19}\)

Bình luận (2)

Các câu hỏi tương tự
HN
Xem chi tiết
VK
Xem chi tiết
HH
Xem chi tiết
MH
Xem chi tiết
MH
Xem chi tiết
KT
Xem chi tiết
TL
Xem chi tiết
HH
Xem chi tiết
VV
Xem chi tiết