Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tìm m để phương trình sau có nghiệm duy nhất
\(\sqrt{x}+\sqrt{1-x}+2m\sqrt{x\left(1-x\right)}-2\sqrt[4]{x\left(1-x\right)}=m^3\)
Giúp mình với đang rất gấp rồi
Tìm m để phương trình có nghiệm duy nhất
a.\(\sqrt{1-x^2}+2\sqrt[3]{1-x^2}=m\)
b. \(\sqrt[4]{x}+\sqrt[4]{1-x}+\sqrt{x}+\sqrt{1-x}=m\)
Tìm m để pt có nghiệm duy nhất: \(\sqrt[4]{x}+\sqrt[4]{1-x}+\sqrt{x}+\sqrt{1-x}=m\)
Tìm m để pt có nghiệm duy nhất :
\(\sqrt[4]{x}+\sqrt[4]{1-x}+\sqrt{x}+\sqrt{1-x}=m\)
\(\left\{{}\begin{matrix}3x-y=2m-1\\x+2y=3m+2\end{matrix}\right.\)
tìm m để hệ có nghiệm duy nhất (x,y) sao cho \(y-\sqrt{x}=1\)
cho phương trình: \(m\sqrt{2x}-\left(\sqrt{2}-1\right)^2=\sqrt{2}-x+m^2\)
a/Tìm m để phương trình có nghiệm dương duy nhất
b/tìm m để phương trình có nghiệm \(x=3-\sqrt{2}\)
Với giá trị nào của tham số m thì phương trình sau có nghiệm? Tìm nghiệm đó theo m
\(\sqrt{x+16-4m}=2\sqrt{x+4-2m}-\sqrt{x}\)
cho hệ phương trình: \(\hept{\begin{cases}x+my=2m^2\\x-y=m^2+1\end{cases}}\)
tìm m để hệ phương trình có nghiệm duy nhất (x;y) sao cho biểu thức S= \(\sqrt{x}+\sqrt{y}\) đạt giá trị nhỏ nhất
tìm m để pt có nghiệm
m(\(\sqrt{1+x^2}-\sqrt{1-x^2}++2\)) = \(2\sqrt{1-x^4}+\sqrt{1+x^2}-\sqrt{1-x^2}\)