Ta có: \(y'=12x^2-2\left(m+1\right)x-m\)
Để \(y'\ge0\) thì \(12x^2-2\left(m+1\right)x-m\ge0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(m+1\right)^2-12.\left(-m\right)\le0\\12>0\end{matrix}\right.\)
\(\Rightarrow m^2+14m+1\le0\)
\(\Leftrightarrow-7-4\sqrt{3}\le m\le-7+4\sqrt{3}\)
Vậy...
\(y'=12x^2-2\left(m+1\right)x-m\)
\(y'\ge0\) ; \(\forall x\Leftrightarrow12x^2-2\left(m+1\right)x-m\ge0\) ;\(\forall x\)
\(\Leftrightarrow\Delta'=\left(m+1\right)^2+12m\le0\)
\(\Leftrightarrow m^2+14m+1\le0\)
\(\Rightarrow-7-4\sqrt{3}\le m\le-7+4\sqrt{3}\)