DY

tìm m để pt: \(\left(x^2-2x+5\right)\left(x+1\right)\left(x-3\right)=m\)

có 4 nghiệm phân biệt

NL
23 tháng 11 2021 lúc 19:45

\(\Leftrightarrow\left(x^2-2x+5\right)\left(x^2-2x-3\right)=m\)

Đặt \(x^2-2x-3=t\) (1)

(1) có 2 nghiệm x phân biệt khi \(\Delta'=1-\left(-3-t\right)>0\Rightarrow t>-4\)

Khi đó pt đã cho trở thành:

\(\left(t+8\right)t=m\)

\(\Leftrightarrow t^2+8t=m\) (2)

Do (2) là pt bậc 2 có tối đa 2 nghiệm nên pt đã cho có 4 nghiệm pb khi và chỉ khi (2) có 2 nghiệm pb đều lớn hơn -4

Từ đồ thị \(f\left(t\right)=t^2+8t\) ta thấy ko tồn tại m thỏa mãn

Bình luận (0)