Bài 6: Hệ thức Vi-et và ứng dụng

LN

Tìm m để phương trình x2 + 2x + m – 3 = 0 có 2 nghiệm phân biệt x1, x2 thảo mãn x12 + x22 + 2(xx2)2 = 7x1x2

NT
27 tháng 3 2021 lúc 22:42

Sửa đề: \(x_1^2+x_2^2+2\left(x_1\cdot x_2\right)^2=7x_1x_2\)

Ta có: \(\Delta=2^2-4\cdot1\cdot\left(m-3\right)=4-4m+12=-4m+16\)

Để phương trình có hai nghiệm phân biệt thì \(\Delta>0\)

\(\Leftrightarrow-4m+16>0\)

\(\Leftrightarrow-4m>-16\)

hay m<4

Khi m<4, Áp dụng hệ thức Vi-et, ta có: 

\(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1\cdot x_2=m-3\end{matrix}\right.\)

Ta có: \(x_1^2+x_2^2+2\left(x_1\cdot x_2\right)^2=7x_1x_2\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2\cdot x_1\cdot x_2+2\left(x_1\cdot x_2\right)^2=7\cdot x_1\cdot x_2\)

\(\Leftrightarrow\left(-2\right)^2-2\cdot\left(m-3\right)+2\cdot\left(m-3\right)^2=7\left(m-3\right)\)

\(\Leftrightarrow4-2m+6+2\left(m^2-6m+9\right)=7m-21\)

\(\Leftrightarrow-2m+10+2m^2-12m+18-7m+21=0\)

\(\Leftrightarrow2m^2-21m+49=0\)

\(\Leftrightarrow2m^2-14m-7m+49=0\)

\(\Leftrightarrow2m\left(m-7\right)-7\left(m-7\right)=0\)

\(\Leftrightarrow\left(m-7\right)\left(2m-7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m-7=0\\2m-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=7\left(loại\right)\\2m=7\end{matrix}\right.\Leftrightarrow m=\dfrac{7}{2}\left(nhận\right)\)

Vậy: Để phương trình có hai nghiệm phân biệt thỏa mãn \(x_1^2+x_2^2+2\left(x_1\cdot x_2\right)^2=7x_1x_2\) thì \(m=\dfrac{7}{2}\)

Bình luận (0)
TH
27 tháng 3 2021 lúc 22:45

Ta có: x2 + 2x + m - 3 = 0

Theo hệ thực Vi-ét ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1x_2=m-3\end{matrix}\right.\) (I)

Ta có: x12 + x22 + 2(x1x2)2 = 7x1x

\(\Leftrightarrow\) (x1 + x2)2 - 2x1x2 + 2(x1x2)2 = 7x1x(*)

Thay (I) vào (*) ta được:

(-2)2 - 2(m - 3) + 2(m - 3)2 = 7(m - 3)

\(\Leftrightarrow\) 4 - 9m + 27 + 2(m2 - 6m + 9) = 0

\(\Leftrightarrow\) 31 - 9m + 2m2 - 12m + 18 = 0

\(\Leftrightarrow\) 2m2 - 21m + 49 = 0

\(\Leftrightarrow\) \(\left[{}\begin{matrix}m=7\\m=3,5\end{matrix}\right.\)

Vậy ...

Chúc bn học tốt!

Bình luận (1)

Các câu hỏi tương tự
NV
Xem chi tiết
LE
Xem chi tiết
NQ
Xem chi tiết
XH
Xem chi tiết
ND
Xem chi tiết
ND
Xem chi tiết
HN
Xem chi tiết
H24
Xem chi tiết
CM
Xem chi tiết