KT

tìm m để phương trình có nghiệm : 

a) mx^2 +6(m-2)x+4m-7=0 

b) (m^2-m)x^2+2mx+1=0

NT
24 tháng 2 2022 lúc 22:47

a: Trường hợp 1: m=0

Pt sẽ là \(6\cdot\left(-2\right)x+4\cdot0-7=0\)

=>-12x-7=0

=>x=-7/12(nhận)

Trường hợp 2: m<>0

\(\Delta=\left(6m-12\right)^2-4m\left(4m-7\right)\)

\(=36m^2-144m+144-16m^2+28m\)

\(=20m^2-116m+144\)

Để phương trình có nghiệm thì \(20m^2-116m+144>=0\)

Đặt \(20m^2-116m+144=0\)

\(\Delta=\left(-116\right)^2-4\cdot20\cdot144=1936\)

Do đó: Phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}m_1=4\\m_2=\dfrac{9}{5}\end{matrix}\right.\)

Do đó: Bất phương trình xảy ra khi m<=9/5 hoặc m>=4

Vậy: m<=9/5 hoặc m>=4

b: Trường hợp 1: m=0

Pt sẽ là 1=0(vô lý)

Trường hợp 2: m=1

Pt sẽ là 2x+1=0

hay x=-1/2(nhận)

Trường hợp 3: m khác 0 và m khác 1

\(\Delta=\left(2m\right)^2-4\left(m^2-m\right)=4m^2-4m^2+4m=4m\)

Để phương trình có nghiệm thì 4m>0

hay m>0

Vậy: m>0

Bình luận (0)

Các câu hỏi tương tự
HD
Xem chi tiết
H24
Xem chi tiết
HT
Xem chi tiết
HT
Xem chi tiết
H24
Xem chi tiết
MH
Xem chi tiết
H24
Xem chi tiết
TN
Xem chi tiết
ND
Xem chi tiết