\(y'=f\left(x\right)=x^2-2\left(m-1\right)x-m+3\)
Để hàm số đồng biến trên các khoảng đã cho
TH1: \(\Delta'=\left(m-1\right)^2+m-3\le0\)
\(\Leftrightarrow m^2-m-2\le0\Rightarrow-1\le m\le2\)
TH2: \(\left\{{}\begin{matrix}\Delta'>0\\x_1< x_2\le-3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m< -1\\m>2\end{matrix}\right.\\\left(x_1+3\right)\left(x_2+3\right)\ge0\\\frac{x_1+x_2}{2}< -3\end{matrix}\right.\)
Xét 2 điều kiện dưới \(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2+3\left(x_1+x_2\right)+9\ge0\\x_1+x_2< -6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-m+3+6\left(m-1\right)+9\ge0\\2\left(m-1\right)< -6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ge-\frac{6}{5}\\m< -4\end{matrix}\right.\) không tồn tại m thỏa mãn
Vậy \(-1\le m\le2\)