Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Bài 1: Sự đồng biến và nghịch biến của hàm số

NH

Tìm m để h/s y = 1/3 x3 - (m-1)x2 - (m-3)x +2017m đồng biến trên ( -3, -1) và ( 0,3)

NL
27 tháng 7 2020 lúc 23:36

\(y'=f\left(x\right)=x^2-2\left(m-1\right)x-m+3\)

Để hàm số đồng biến trên các khoảng đã cho

TH1: \(\Delta'=\left(m-1\right)^2+m-3\le0\)

\(\Leftrightarrow m^2-m-2\le0\Rightarrow-1\le m\le2\)

TH2: \(\left\{{}\begin{matrix}\Delta'>0\\x_1< x_2\le-3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m< -1\\m>2\end{matrix}\right.\\\left(x_1+3\right)\left(x_2+3\right)\ge0\\\frac{x_1+x_2}{2}< -3\end{matrix}\right.\)

Xét 2 điều kiện dưới \(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2+3\left(x_1+x_2\right)+9\ge0\\x_1+x_2< -6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-m+3+6\left(m-1\right)+9\ge0\\2\left(m-1\right)< -6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ge-\frac{6}{5}\\m< -4\end{matrix}\right.\) không tồn tại m thỏa mãn

Vậy \(-1\le m\le2\)

Bình luận (0)

Các câu hỏi tương tự
NH
Xem chi tiết
DD
Xem chi tiết
NL
Xem chi tiết
TH
Xem chi tiết
NT
Xem chi tiết
AN
Xem chi tiết
TL
Xem chi tiết
ES
Xem chi tiết
NT
Xem chi tiết