H24

tìm m để \(f\left(x\right)=\left(2m^2+m-6\right)x^2+\left(2m-3\right)x-1>0\) vô nghiệm (mn giải chi tiết giúp em với, em cảm ơn ạ)

NL
15 tháng 1 lúc 22:04

BPT đã cho vô nghiệm khi và chỉ khi BPT \(f\left(x\right)\le0\) nghiệm đúng với mọi x

TH1: \(\left\{{}\begin{matrix}2m^2+m-6=0\\2m-3=0\end{matrix}\right.\) \(\Rightarrow m=\dfrac{3}{2}\)

TH2: \(\left\{{}\begin{matrix}2m^2+m-6< 0\\\Delta=\left(2m-3\right)^2+4\left(2m^2+m-6\right)\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2m^2+m-6< 0\\12m^2-8m-15\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-3< m< \dfrac{3}{2}\\-\dfrac{5}{6}\le m\le\dfrac{3}{2}\end{matrix}\right.\) \(\Rightarrow-\dfrac{5}{6}\le m< \dfrac{3}{2}\)

Kết hợp 2 trường hợp ta được \(-\dfrac{5}{6}\le m\le\dfrac{3}{2}\)

Bình luận (0)