§5. Dấu của tam thức bậc hai

SK

Tìm m để các phương trình sau có hai nghiệm dương phân biệt :

a) \(\left(m^2+m+1\right)x^2+\left(2m-3\right)x+m-5=0\)

b) \(x^2-6mx+2-2m+9m^2=0\)

H24
5 tháng 4 2017 lúc 17:26

a)

Làm từng cái

(1)để có hai nghiệm: \(m^2+m+1\ne0\) ta có

\(m^2+m+1=\left(m+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall m\)đúng với \(\forall m\)

(2) \(\Delta>0\Rightarrow\left(2m-3\right)^2-4\left(m-5\right)\left(m^2+m+1\right)>0\)

{để đó tý giải quyết sau }

(3) tích hai nghiệm phải dương

\(\Rightarrow x_1x_2=\dfrac{c}{a}>0\Rightarrow m-5>0\Rightarrow m>5\)

(4) tổng hai nghiệm phải dương

\(\Rightarrow-\dfrac{b}{a}>0\Rightarrow2m-3< 0\Rightarrow m< \dfrac{3}{2}\)

từ (3) (4) => không có m thỏa mãn => kết luận vô nghiệm

 

 

Bình luận (0)
H24
5 tháng 4 2017 lúc 17:36

câu b)

có vẻ nhàn hơn

(1) \(\Delta'>0\Rightarrow9m^2-9m^2+2m-2=2m-2>0\Rightarrow m>1\)

(2)\(-\dfrac{b}{a}>0\Rightarrow m>0\)

(3) \(\dfrac{c}{a}>0\Rightarrow9m^2-2m+2>0\) đúng vơi mọi m

(1)(2)(3) nghiệm là: m>1

Bình luận (0)

Các câu hỏi tương tự
TT
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
QP
Xem chi tiết
TT
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết