Ôn tập chương IV

H24

Tìm m để \(-2x^2+2\left(m-2\right)x+m-2=0\) có hai nghiệm phân biệt

NT
30 tháng 3 2022 lúc 21:31

Để phương trình có hai nghiệm phân biệt thì Δ>0

\(\Leftrightarrow\left(2m-4\right)^2-4\cdot\left(-2\right)\left(m-2\right)>0\)

\(\Leftrightarrow4m^2-16m+16+8\left(m-2\right)>0\)

\(\Leftrightarrow4m^2-16m+16+8m-16>0\)

=>4m(m-2)>0

=>m>2 hoặc m<0

Bình luận (0)
KN
30 tháng 3 2022 lúc 21:36

Pt có 2 nghiệm phân biệt <=>\(\Delta^'>0\)<=>\(\left(m-2\right)^2-\left(-2\right)\left(m-2\right)=\left(m-2\right)\left(m-2+2\right)=m\left(m-2\right)>0\)

<=>\(\left\{{}\begin{matrix}m>0\\m-2>0\end{matrix}\right.\)hoặc\(\left\{{}\begin{matrix}m< 0\\m-2< 0\end{matrix}\right.\)

<=> m > 2 hoặc m < 0

Vậy pt có 2 ng phân biệt <=> m > 2 hoặc m < 0

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
TN
Xem chi tiết
BK
Xem chi tiết
DK
Xem chi tiết
SA
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
CA
Xem chi tiết