Bài 3: Nhị thức Niu-tơn

NK

Tìm hệ số lớn nhất trong khai triển (1+2x/3)10

AH
13 tháng 12 2017 lúc 0:35

Lời giải:

Theo khai triển nhị thức Newton ta có:

\(\left ( 1+\frac{2x}{3} \right )^{10}=\sum _{k=0}^{10}C^{k}_{10} 1^{k}\left ( \frac{2x}{3} \right )^{10-k}\)

\(=C^{0}_{10}\left ( \frac{2x}{3} \right )^{10}+C_{10}^{1}\left ( \frac{2x}{3} \right )^9+.....+C_{10}^{10}\left ( \frac{2x}{3} \right )^0\)

Các hệ số: \(C_{10}^0(\frac{2}{3})^{10}; C_{10}^{1}(\frac{2}{3})^9; ...; C_{10}^{10}(\frac{2}{3})^0\)

Xét hàm: \(f(x)=C_{10}^{x}\left(\frac{2}{3}\right)^{10-x}\)

\(f(a+1)=C_{10}^{a+1}(\frac{2}{3})^{9-a}\)

\(f(a)=C_{10}^{a}\left(\frac{2}{3}\right)^{10-a}\)

\(f(a+1)-f(a)=\frac{10!}{(a+1)!(9-a)!}\frac{2^{9-a}}{3^{9-a}}-\frac{10!}{a!(10-a)!}\frac{2^{10-a}}{3^{10-a}}\)

\(=\frac{10!.2^{9-a}}{a!(9-a)!.3^{9-a}}\left[ \frac{1}{a+1}-\frac{2}{3(10-a)}\right]\)

\(=\frac{10!.2^{9-a}}{a!(9-a)!.3^{9-a}}.\frac{28-5a}{3(a+1)(10-a)}\)

Nếu \(a\geq 6\Rightarrow f(a+1)-f(a)< 0\Rightarrow \) hàm giảm

Nếu \(a\leq 6\Rightarrow f(a+1)-f(a)> 0\) , hàm tăng

Do đó điểm cực đại của \(f(x)\) với \(x=0;1;2;....; 10\) đặt tại \(x=6\)

Do đó hệ số lớn nhất là: \(C_{10}^{6}(\frac{2}{3})^4=\frac{1120}{27}\)

Bình luận (4)

Các câu hỏi tương tự
NK
Xem chi tiết
H24
Xem chi tiết
SB
Xem chi tiết
NH
Xem chi tiết
HN
Xem chi tiết
HH
Xem chi tiết
H24
Xem chi tiết
QH
Xem chi tiết
TK
Xem chi tiết