Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

NC

Tìm GTNN và GTLN của biểu thức :

A= x(99 + \(\sqrt{101-x^2}\))

HN
20 tháng 12 2016 lúc 21:41

Ta có : \(\left|A\right|=\left|x\right|.\left(99+\sqrt{101-x^2}\right)=\left|x\right|.\left(\sqrt{99}.\sqrt{99}+1.\sqrt{101-x^2}\right)\)

Áp dụng BĐT Bunhiacopxki và Cauchy liên tiếp , ta có \(\left|A\right|=\left|x\right|.\left(\sqrt{99}.\sqrt{99}+1.\sqrt{101-x^2}\right)\le\left|x\right|.\sqrt{\left(99+1\right).\left(99+101-x^2\right)}\)

\(\Leftrightarrow\left|A\right|\le10.\sqrt{x^2.\left(200-x^2\right)}\le10.\frac{200-x^2+x^2}{2}=1000\)

\(\Rightarrow\left|A\right|\le1000\Leftrightarrow-1000\le A\le1000\)

min A = -1000 tại x = -10

max A = 1000 tại x =  10

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
NL
Xem chi tiết
MD
Xem chi tiết
DS
Xem chi tiết
CT
Xem chi tiết
LM
Xem chi tiết
VT
Xem chi tiết
CT
Xem chi tiết
HK
Xem chi tiết