LH

Tìm GTNN 

D= x^2 + 5y^2 - 2xy +4y +3

H24
8 tháng 8 2023 lúc 10:13

D = (x2 - 2xy + y2) + [(2y)2+ 2.2y.1 + 12] + 2

= (x - y)2 + (2y + 1)2 + 2

Ta thấy: (x - y)2 ≥0∀x thuộc R

              (2y + 1)2 ≥0∀y thuộc R

=> (x - y)2 + (2y + 1)2  ≥0

=> (x - y)2 + (2y + 1)2 + 2  ≥2 

=> Min D = 2 \(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\2y-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=y\\y=\dfrac{1}{2}\end{matrix}\right.\)               \(\Rightarrow x=y=\dfrac{1}{2}\)

Vậy Min D = 2 khi x=y=1/2

Bình luận (8)
KL
8 tháng 8 2023 lúc 10:15

\(D=x^2+5y^2-2xy+4y+3\)

\(=x^2-2xy+y^2+4y^2+4y+1+2\)

\(=\left(x-y\right)^2+\left(2y+1\right)^2+2\)

Do \(\left(x-y\right)^2\ge0\forall x,y\in R\)

\(\left(2y+1\right)^2\ge0\forall y\in R\)

\(\Rightarrow\left(x-y\right)^2+\left(2y+1\right)^2+2\ge2\forall x,y\in R\)

\(\Rightarrow\) Giá trị nhỏ nhất của D là 2 \(\Leftrightarrow x=y=-\dfrac{1}{2}\)

 

Bình luận (0)

Các câu hỏi tương tự
NO
Xem chi tiết
KD
Xem chi tiết
LD
Xem chi tiết
QT
Xem chi tiết
TQ
Xem chi tiết
QT
Xem chi tiết
PD
Xem chi tiết
NL
Xem chi tiết
BT
Xem chi tiết