Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Chương I - Căn bậc hai. Căn bậc ba

TN

Tìm GTNN của:

S=\(\frac{\left(x+y\right)^2}{x^2+y^2}+\frac{\left(x+y\right)^2}{xy}\) biết x,y>0

NT
1 tháng 6 2019 lúc 21:33

\(S=\frac{\left(x+y\right)^2}{x^2+y^2}+\frac{\left(x+y\right)^2}{xy}\)\(=\left(x+y\right)^2\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{\left(x+y\right)^2}{2xy}\)

Áp dụng BĐT Cauchy-Schwar dạng phân thức:

\(\frac{1}{x^2+y^2}+\frac{1}{2xy}\ge\frac{4}{x^2+2xy+y^2}\)

\(\Rightarrow\left(x+y\right)^2.\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)\ge\frac{4\left(x+y\right)^2}{\left(x+y\right)^2}=4\)(1)

Mặt khác, với \(x,y>0\): \(\left(x-y\right)^2\ge0\Rightarrow\left(x+y\right)^2\ge4xy\)

\(\Rightarrow\frac{1}{4xy}\ge\frac{1}{\left(x+y\right)^2}\Rightarrow\frac{\left(x+y\right)^2}{2xy}\ge2\)(2)

Từ (1) và (2) \(\Rightarrow S\ge6\)

\(''=''\Leftrightarrow x=y\)

Bình luận (0)

Các câu hỏi tương tự
DA
Xem chi tiết
VT
Xem chi tiết
TH
Xem chi tiết
AD
Xem chi tiết
HC
Xem chi tiết
AD
Xem chi tiết
AJ
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết