Chương I - Căn bậc hai. Căn bậc ba

TH

Cho x,y>0. chứng minh: \(\left|\frac{x+y }{2}-\sqrt{xy}\right|+\left|\frac{x+y}{2}+\sqrt{xy}\right|=\left|x\right|+ \left|y\right|\)

Hỏi đẳng thức còn đúng không nếu x,y<0.

LD
9 tháng 3 2019 lúc 13:50

\(\left|\frac{x+y}{2}-\sqrt{xy}\right|+\left|\frac{x+y}{2}+\sqrt{xy}\right|=\left|\frac{x+2\sqrt{xy}+y}{2}\right|+\left|\frac{x-2\sqrt{xy}+y}{2}\right|\)

=\(\left|\frac{\left(\sqrt{x}+\sqrt{y}\right)^2}{2}\right|+\left|\frac{\left(\sqrt{x}-\sqrt{y}\right)^2}{2}\right|\) (*)

\(\left(\sqrt{x}+\sqrt{y}\right)^2\ge0\Rightarrow\frac{\left(\sqrt{x}+\sqrt{y}\right)^2}{2}\ge0\)

\(\left(\sqrt{x}-\sqrt{y}\right)^2\ge0\Rightarrow\frac{\left(\sqrt{x}-\sqrt{y}\right)^2}{2}\ge0\)

\(\Rightarrow\) (*) \(\Leftrightarrow\) \(\frac{x+2\sqrt{xy}+y+x-2\sqrt{xy}+y}{2}=\frac{2\left(x+y\right)}{2}=x+y=\left|x\right|+\left|y\right|\) ( vì x ; y >0)

Với x,y < 0 , đẳng thức trên sai ngay từ bước biến đổi (*) , vì x,y <0 thì \(\sqrt{x}\)\(\sqrt{y}\) không xác định

Bình luận (1)

Các câu hỏi tương tự
HC
Xem chi tiết
HC
Xem chi tiết
DT
Xem chi tiết
TN
Xem chi tiết
NM
Xem chi tiết
TV
Xem chi tiết
LG
Xem chi tiết
AD
Xem chi tiết
NC
Xem chi tiết