Chương I - Căn bậc hai. Căn bậc ba

AJ

Cho x, y, z>0 thỏa mãn xy+yz+zx=5. Tìm GTNN của P=\(\frac{3x+3y+2z}{\sqrt{6\left(x^2+5\right)}+\sqrt{6\left(y^2+5\right)}+\sqrt{z^2+5}}\)

NL
7 tháng 6 2020 lúc 18:30

\(x^2+5=x^2+xy+yz+zx=\left(x+y\right)\left(x+z\right)\)

\(\Rightarrow P=\frac{3x+3y+2z}{\sqrt{6\left(x+y\right)\left(x+z\right)}+\sqrt{6\left(x+y\right)\left(y+z\right)}+\sqrt{\left(x+z\right)\left(y+z\right)}}\)

\(P=\frac{3x+3y+2z}{\sqrt{\left(3x+3y\right)\left(2x+2z\right)}+\sqrt{\left(3x+3y\right)\left(2y+2z\right)}+\sqrt{\left(x+z\right)\left(y+z\right)}}\)

\(P\ge\frac{2\left(3x+3y+2z\right)}{3x+3y+2x+2z+3x+3y+2y+2z+x+z+y+z}\)

\(P\ge\frac{2\left(3x+3y+2z\right)}{9x+9y+6z}=\frac{2\left(3x+3y+2z\right)}{3\left(3x+3y+2z\right)}=\frac{2}{3}\)

\(P_{min}=\frac{2}{3}\) khi \(\left\{{}\begin{matrix}x=y=1\\z=2\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
Xem chi tiết
NM
Xem chi tiết
DN
Xem chi tiết
HC
Xem chi tiết
PK
Xem chi tiết
H24
Xem chi tiết
HC
Xem chi tiết
VN
Xem chi tiết
HS
Xem chi tiết