Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

HY

Tìm GTNN của \(M=\frac{1}{ab} +\frac{1}{a^2+ab}+\frac{1}{b^2+ab}+\frac{1}{a^2+b^2}\) với a+b=1 và a;b>0

AH
27 tháng 7 2024 lúc 16:02

Lời gải:

Áp dụng BĐT Cauchy Schwarz và BĐT AM-GM:

$M=\frac{1}{2ab}+\frac{1}{2ab}+\frac{1}{a^2+ab}+\frac{1}{b^2+ab}+\frac{1}{a^2+b^2}$

$\geq \frac{(1+1+1+1+1)^2}{2ab+2ab+a^2+ab+b^2+ab+a^2+b^2}=\frac{25}{2a^2+2b^2+6ab}$

$=\frac{25}{2(a^2+b^2+2ab)+2ab}$

$=\frac{25}{2(a+b)^2+2ab}=\frac{25}{2+2ab}\geq \frac{25}{2+2.\frac{(a+b)^2}{4}}=\frac{25}{2+\frac{2}{4}}=10$

Vậy  $M_{\min}=10$. Giá trị này đạt tại $a=b=\frac{1}{2}$

Bình luận (0)

Các câu hỏi tương tự
EC
Xem chi tiết
Xem chi tiết
NN
Xem chi tiết
PT
Xem chi tiết
LD
Xem chi tiết
LN
Xem chi tiết
HD
Xem chi tiết
GP
Xem chi tiết
Xem chi tiết