Ôn tập chương 1: Căn bậc hai. Căn bậc ba

VL

tìm GTNN của bth Q= \(\dfrac{x+4\sqrt{x}+20}{2\left(\sqrt{x}+2\right)}\) với x ≥ 0.

AT
2 tháng 7 2021 lúc 20:02

\(Q=\dfrac{x+4\sqrt{x}+20}{2\left(\sqrt{x}+2\right)}=\dfrac{x+4\sqrt{x}+4+16}{2\left(\sqrt{x}+2\right)}=\dfrac{\left(\sqrt{x}+2\right)^2+16}{2\left(\sqrt{x}+2\right)}\)

\(=\dfrac{1}{2}\left(\sqrt{x}+2\right)+\dfrac{16}{2\left(\sqrt{x}+2\right)}\ge2\sqrt{\dfrac{1}{2}\left(\sqrt{x}+2\right).\dfrac{16}{2\left(\sqrt{x}+2\right)}}\)

\(=2\sqrt{4}=4\)

\(\Rightarrow Q_{min}=4\) khi \(\dfrac{1}{2}\left(\sqrt{x}+2\right)=\dfrac{16}{2\left(\sqrt{x}+2\right)}\Rightarrow\left(\sqrt{x}+2\right)^2=16\)

mà \(\sqrt{x}+2>0\Rightarrow\sqrt{x}+2=4\Rightarrow x=4\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
TP
Xem chi tiết
DD
Xem chi tiết
VL
Xem chi tiết
H24
Xem chi tiết
LH
Xem chi tiết
TN
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết