Tìm GTNN của bt sau:

B=2x^2+y^2-2x+2xy+2y+3

LL
21 tháng 9 2021 lúc 16:03

\(B=2x^2+y^2-2x+2xy+2y+3=y^2+2y\left(x+1\right)+\left(x+1\right)^2+\left(x^2-4x+4\right)-2=\left(x+y+1\right)^2+\left(x-2\right)^2-2\ge-2\)

\(minB=-2\Leftrightarrow\)\(\left\{{}\begin{matrix}x=2\\y=-3\end{matrix}\right.\)

Bình luận (0)
NM
21 tháng 9 2021 lúc 16:04

\(B=2x^2+y^2-2x+2xy+2y+3\\ B=\left(x^2+2xy+y^2\right)+2\left(x+y\right)+1+\left(x^2-4x+4\right)-2\\ B=\left(x+y\right)^2+2\left(x+y\right)+1+\left(x-2\right)^2-2\\ B=\left(x+y+1\right)^2+\left(x-2\right)^2-2\ge-2\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x+y=-1\\x=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-3\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
QT
Xem chi tiết
HP
Xem chi tiết
QN
Xem chi tiết
SP
Xem chi tiết
TA
Xem chi tiết
VH
Xem chi tiết
PM
Xem chi tiết
LN
Xem chi tiết
MS
Xem chi tiết