B=(x+1)(x+4)(x+2)(x+3)\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)\)
đặt x^2+5x+5 =t (t>=0)
=> B=\(\left(t+1\right)\left(t-1\right)=t^2-1\) ta có: \(t^2\ge0\Rightarrow t^2-1\ge-1\Rightarrow MinB=-1\Leftrightarrow t=0\Leftrightarrow x^2+5x+5=0\Leftrightarrow\left(x^2+5x+\frac{25}{4}\right)=\frac{5}{4}\Leftrightarrow\left(x+\frac{5}{2}\right)^2=\frac{5}{4}\Rightarrow x=-\frac{5}{2}+-\frac{\sqrt{5}}{2}\)
B=(x+1)(x+2)(x+3)(x+4)T=(x+1)(x+2)(x+3)(x+4)
=(x+1)(x+4)(x+2)(x+3)=(x+1)(x+4)(x+2)(x+3)
=(x2+5x+4)(x2+5x+6)=(x2+5x+4)(x2+5x+6)
Đặt :x^2+5x+4=ax2+5x+4=a ⇒T=(a−1)(a+1)⇒T=(a−1)(a+1)
=a^2−1=(x2+5x+5)2−1≥−1=a2−1=(x2+5x+5)2−1≥−1
Vậy MinT=−1MinT=−1 khi
x2+5x+5=0⇒(x2+5x+254)−54=0x2+5x+5=0⇒(x2+5x+254)−54=0⇔(x+52)2=54⇔(x+52)2=54
\(\Rightarrow\orbr{\begin{cases}x+\frac{5}{2}=\sqrt{\frac{5}{4}}\\x+\frac{5}{2}=-\sqrt{\frac{5}{4}}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\sqrt{\frac{5}{4}-\frac{5}{2}}\\x=-\sqrt{\frac{5}{4}-\frac{5}{2}}\end{cases}}\)
B=(x+1)(x+2)(x+3)(x+4)T=(x+1)(x+2)(x+3)(x+4)
=(x+1)(x+4)(x+2)(x+3)=(x+1)(x+4)(x+2)(x+3)
=(x2+5x+4)(x2+5x+6)=(x2+5x+4)(x2+5x+6)
Đặt x2+5x+4=ax2+5x+4=a ⇒B=(a−1)(a+1)⇒T=(a−1)(a+1)
=a2−1=(x2+5x+5)2−1≥−1=a2−1=(x2+5x+5)2−1≥−1
Vậy MinB=−1MinB=−1 khi
x2+5x+5=0⇒(x2+5x+254)−54=0x2+5x+5=0⇒(x2+5x+254)−54=0⇔(x+52)2=54⇔(x+52)2=54
⇒⎡⎣⎢⎢⎢x+52=54−−√x+52=−54−−√⇒⎡⎣⎢⎢⎢x=54−−√−52x=−54−−√−52