cho \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}=3\) (a, b, c > 0)
Tìm gtnn của P= \(\frac{ab^2}{a+b}+\frac{bc^2}{b+c}+\frac{ca^2}{a+c}\)
Cho a, b, c>0. Tìm GTNN của \(A=\frac{a^3+b^3+c^3}{2abc}+\frac{a^2+b^2}{c^2+ab}+\frac{b^2+c^2}{a^2+bc}+\frac{c^2+a^2}{b^2+ca}\)
Cho a,b,c là các số dương thỏa mãn a+b+c+ab+bc+ca=6abc. Tìm GTNN của P = \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)
Cho a;b;c>0 . Tìm GTNN
\(A=a\left(\frac{a}{2}+\frac{1}{bc}\right)+b\left(\frac{b}{2}+\frac{1}{ca}\right)+c\left(\frac{c}{2}+\frac{1}{ab}\right)\)
Cho a,b,c > 0 . Biết \(a^2+b^2+c^2=1\)
Tìm GTNN của \(P=\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\)
Cho 3 số dương a,b,c thỏa mãn abc=1
tìm GTNN của biểu thức \(p=\frac{bc}{a^2b+a^2c}+\frac{ca}{b^2c+b^2a}+\frac{ab}{c^2a+c^2b}\)
Cho các số thực a, b, c thỏa mãn \(a^2+b^2+c^2+abc=4\). Tìm GTNN của biểu thức \(P=\frac{ab}{a+2b}+\frac{bc}{b+2c}+\frac{ca}{c+2a}\)
cho a, b, c>0 sao cho a+b+c=1
tìm GTNN của \(A=\frac{1}{1-2\left(ab+bc+ca\right)}+\frac{1}{abc}\)
Cho các số a,b,c thỏa mãn 0<a,b,c<1 và ab+bc+ca=1 tìm gtnn của \(P=\frac{a^{^2}.\left(1-2b\right)}{b}+\frac{b.^2.\left(1-2c\right)}{c}+\frac{c^2.\left(1-2a\right)}{a}^{ }\)