Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

SY

Tìm GTNN của \(A=\frac{2}{6x-5-9x^2}\)

Giúp mị nha -.- Mị cảm ơn trước !!!!!!

 

LT
2 tháng 7 2019 lúc 17:22

Ta có: A=\(\frac{-2}{9x^2-6x+1+4}\) =\(\frac{-2}{\left(3x-1\right)^2+4}\)\(\ge\)\(\frac{-2}{4}\)=\(\frac{-1}{2}\)

Vậy giá trị nhỏ nhất của A là \(\frac{-1}{2}\)khi x=\(\frac{1}{3}\)

Bình luận (0)
NP
2 tháng 7 2019 lúc 17:23

\(A=\frac{2}{6x-5-9x^2}\)

\(A=\frac{2}{-9x^2+6x-1-4}\)

\(A=\frac{2}{-\left(9x^2-6x+1\right)-4}\)

\(A=\frac{2}{-\left(3x-1\right)^2-4}\)

Vì \(-\left(3x-1\right)^2\le0\)

\(\Rightarrow-\left(3x-1\right)^2-4\le-4\)

\(\Rightarrow\frac{2}{-\left(3x-1\right)^2-4}\ge\frac{2}{-4}\)

\(\Rightarrow A\ge\frac{-1}{2}\)

Vậy \(GTNN_A=\frac{-1}{2}\)tại \(x=\frac{1}{3}\)

Bình luận (0)
NN
2 tháng 7 2019 lúc 17:28

\(A=\frac{2}{6x-5-9x^2}=\frac{-2}{9x^2-6x+5}=\frac{-2}{\left(3x-1\right)^2+4}\)

Ta thấy ( 3x - 1 )2 \(\ge0\)nên ( 3x - 1 )2 +4 \(\ge4\) do đó \(\frac{1}{\left(3x-1\right)^2+4}\le\frac{1}{4}\) theo t/c \(a\ge b\)thì \(\frac{1}{a}\le\frac{1}{b}\)( với a , b cùng dấu ) .

Do đó \(\frac{-2}{\left(3x-1\right)^2+4}\ge\frac{-2}{4}\Rightarrow A\ge-\frac{1}{2}\)

minA = \(-\frac{1}{2}\)<=> 3x - 1 = 0 <=> x = \(\frac{1}{3}\)

Bình luận (0)

Các câu hỏi tương tự
NH
Xem chi tiết
VM
Xem chi tiết
PH
Xem chi tiết
LL
Xem chi tiết
PN
Xem chi tiết
TC
Xem chi tiết
PH
Xem chi tiết
MA
Xem chi tiết
LL
Xem chi tiết