\(A=\dfrac{1}{2}+\left|2x-1\right|\ge\dfrac{1}{2}\forall x\)
\(minA=\dfrac{1}{2}\Leftrightarrow x=\dfrac{1}{2}\)
\(B=\dfrac{\left|x\right|+2007}{2008}\ge\dfrac{0+2007}{2008}=\dfrac{2007}{2008}\)
\(minB=\dfrac{2007}{2008}\Leftrightarrow x=0\)
\(A=\dfrac{1}{2}+\left|2x-1\right|\ge\dfrac{1}{2}\forall x\)
\(minA=\dfrac{1}{2}\Leftrightarrow x=\dfrac{1}{2}\)
\(B=\dfrac{\left|x\right|+2007}{2008}\ge\dfrac{0+2007}{2008}=\dfrac{2007}{2008}\)
\(minB=\dfrac{2007}{2008}\Leftrightarrow x=0\)
a) Tìm GTNN Của:
A=\(\left(2x+\dfrac{1}{3}\right)^4-1\)
a) Tìm GTLN Của:
B=\(-\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^6+3\)
Tìm x; y; z :
a) \(2009-\left|x-2009\right|=x\)
b) \(\left(2x-1\right)^{2008}+\left(y-\dfrac{2}{5}\right)^{2008}+\left|x+y-z\right|=0\)
Tìm giá trị lớn nhất , giá trị nhỏ nhất của biểu thức :
a)\(A=\left|\dfrac{3}{5}-x\right|+\dfrac{1}{9}\)
b)B=\(\dfrac{2009}{2008}-\left|x-\dfrac{3}{5}\right|\)
c)C=\(-2\left|\dfrac{1}{3}x+4\right|+1\dfrac{2}{3}\)
tìm gtln gtnn của:
\(A=\left|x+1\right|-3\)
\(B=-\left|x-\dfrac{3}{7}\right|-\dfrac{1}{4}\)
Tìm GTLN hoặc GTNN
\(C=\left|2x-\dfrac{3}{5}\right|+1,\left(3\right)\)
\(D=\left|x-3\right|+\left|x+2\right|\)
Tìm GTNN của mỗi biểu thức sau:
a) \(P=\left(x+30\right)^2+\left(y-4\right)^2+1975 \)
b)\(Q=\left(3x+1\right)^2+\left|2y-\dfrac{1}{3}\right|+\sqrt{5}\)
c)\(R=\dfrac{3}{1-x-x^2}\)
Tìm GTNN của biểu thức: \(A=\dfrac{3\left|x+2\right|+1}{\left|x+2\right|+1}\)
Tìm x:
\(a\)) \(\dfrac{2}{3}+\left(x-\dfrac{1}{2}\right)^3=\dfrac{19}{27}\)
\(b\)) \(\left(\dfrac{3}{2}\right)^{2x-1}:\left(\dfrac{27}{8}\right)^3=\dfrac{81}{16}\)
\(c\)) \(\dfrac{1}{2}.2^x+4.2^x=9.2^5\)
\(d\)) \(\text{12 - (2x +1)}^2=-69\)
Tìm GTNN của biểu thức \(\left[\left(x+\dfrac{1}{2}\right)^2+\dfrac{5}{4}\right]^2\)