Bài 2: Liên hệ giữa thứ tự và phép nhân

NH

tìm gtln hoặc gtnn của B=2( \(\frac{x^2}{y^2}\)+\(\frac{y^2}{x^2}\))-\(\left(\frac{x}{y}+\frac{y}{x}\right)\) +1 với x,y khác 0 và xy>0 giúp mình với

NL
16 tháng 7 2020 lúc 22:18

Đặt \(\frac{x}{y}+\frac{y}{x}=a\Rightarrow\frac{x^2}{y^2}+\frac{y^2}{x^2}=a^2-2\)

Ta cũng có: \(a=\frac{x^2+y^2}{xy}=\frac{\left(x-y\right)^2}{xy}+2\ge2\)

Vậy \(B=2\left(a^2-2\right)-a+1\) với \(a\ge2\)

\(B=2a^2-a-3=2a^2-a-6+3\)

\(B=\left(a-2\right)\left(2a+3\right)+3\)

Do \(a\ge2\Rightarrow\left\{{}\begin{matrix}a-2\ge0\\2a+3>0\end{matrix}\right.\) \(\Rightarrow\left(a-2\right)\left(2a+3\right)\ge0\)

\(\Rightarrow B\ge3\Rightarrow B_{min}=3\) khi \(a=2\) hay \(x=y\)

Bình luận (0)

Các câu hỏi tương tự
NA
Xem chi tiết
DQ
Xem chi tiết
NV
Xem chi tiết
PP
Xem chi tiết
NA
Xem chi tiết
PP
Xem chi tiết
NT
Xem chi tiết
HB
Xem chi tiết
TN
Xem chi tiết