mình sẽ cho bạn 1 công thức lớp 9, nhớ nhé, nó sẽ giải được hầu hết các bài tìm min max mà có phân số như kiểu bài này
đối với phương trình bậc 2 ẩn x ví dụ như ax^2+bx+c=0 với a,b,c là tham số
ta luôn có \(\Delta\)(đọc là đenta, phiên âm của delta, viết giống tam giác) =b^2-4ac
để phương trình có nghiệm thì \(\Delta\ge0\)thì phương trình mới có nghiệm
đó là công thức, giải bài trên thì bạn làm bước sau ra nháp:
\(yx^2-5yx+7y=x^2\Rightarrow x^2\left(y-1\right)-5yx+7y=0\)
phương trình trên là phương trình bậc 2 ẩn x, y là tham số, theo công thức trên thì a là y-1, b là -5y, c là 7y
vậy để phương trình luôn có nghiệm thì \(\Delta=b^2-4ac=25y^2-4.7y\left(y-1\right)\ge0\)
Giải cái bất phương trình đó ra bạn sẽ có \(-3y^2+28y\ge0\Rightarrow y\left(3y-28\right)\le0\)
giải ra sẽ có \(0\le y\le\frac{28}{3}\)
thế là đã tìm ra min và max của y
Trình bày vào vở như sau:
Đầu tiên tự chứng minh mẫu dương nhé, mình lười ^^
sau đó viết :
\(y=\frac{x^2}{x^2-5x+7}\ge0\)
dấu = xảy ra khi x=0
ta có: \(y=\frac{x^2}{x^2-5x+7}=\frac{28}{3}+\left(\frac{x^2}{x^2-5x+7}-\frac{28}{3}\right)\)
\(=...=\frac{28}{3}-\frac{25x^2-140x+196}{3\left(x^2-5x+7\right)}=\frac{28}{3}-\frac{\left(5x-14\right)^2}{...}\le\frac{28}{3}\)
(mấy cái bước quy đồng tự làm hộ mình cái, mình lười ^^)
rồi đó, vậy tìm được min và max của y, khi bạn tìm được min max y ra nháp rồi thì cứ lấy biểu thức ban đầu cộng thêm với cái số đó rồi trừ đi nó, cuối cùng kiểu gì cũng ra 1 cái bình phương, với điều kiện là bài này phải có mẫu dương nhé
mệt quá ai có lòng từ bi phát
-Min : quá dễ,đánh giá mẫu dương, tử ko âm từ đó min=0 ,đẳng thức xảy ra <=> x=0
-Max : A đạt max <=> 1/A đạt min
biến đổi về 1/A=7(1/x-5/14)2+3/28 >/ 3/28 => min của 1/A = 3/28 => maxA=28/3
đẳng thức xảy ra <=> x=14/5