NN

Tìm gtln. gtnn của \(y=\frac{x^2}{x^2-5x+7}\)

TC
5 tháng 4 2017 lúc 22:36

mình sẽ cho bạn 1 công thức lớp 9, nhớ nhé, nó sẽ giải được hầu hết các bài tìm min max mà có phân số như kiểu bài này

đối với phương trình bậc 2 ẩn x ví dụ như ax^2+bx+c=0 với a,b,c là tham số

ta luôn có \(\Delta\)(đọc là đenta, phiên âm của delta, viết giống tam giác) =b^2-4ac

để phương trình có nghiệm thì  \(\Delta\ge0\)thì phương trình mới có nghiệm

đó là công thức, giải bài trên thì bạn làm bước sau ra nháp: 

\(yx^2-5yx+7y=x^2\Rightarrow x^2\left(y-1\right)-5yx+7y=0\)

phương trình trên là phương trình bậc 2 ẩn x, y là tham số, theo công thức trên thì a là y-1, b là -5y, c là 7y

vậy để phương trình luôn có nghiệm thì \(\Delta=b^2-4ac=25y^2-4.7y\left(y-1\right)\ge0\)

Giải cái bất phương trình đó ra bạn sẽ có \(-3y^2+28y\ge0\Rightarrow y\left(3y-28\right)\le0\)

giải ra sẽ có \(0\le y\le\frac{28}{3}\)

thế là đã tìm ra min và max của y

Trình bày vào vở như sau:

Đầu tiên tự chứng minh mẫu dương nhé, mình lười ^^

sau đó viết :

\(y=\frac{x^2}{x^2-5x+7}\ge0\)

dấu = xảy ra khi x=0

ta có: \(y=\frac{x^2}{x^2-5x+7}=\frac{28}{3}+\left(\frac{x^2}{x^2-5x+7}-\frac{28}{3}\right)\)

\(=...=\frac{28}{3}-\frac{25x^2-140x+196}{3\left(x^2-5x+7\right)}=\frac{28}{3}-\frac{\left(5x-14\right)^2}{...}\le\frac{28}{3}\)

(mấy cái bước quy đồng tự làm hộ mình cái, mình lười ^^)

rồi đó, vậy tìm được min và max của y, khi bạn tìm được min max y ra nháp rồi thì cứ lấy biểu thức ban đầu cộng thêm với cái số đó rồi trừ đi nó, cuối cùng kiểu gì cũng ra 1 cái bình phương, với điều kiện là bài này phải có mẫu dương nhé

mệt quá ai có lòng từ bi phát

Bình luận (0)
HP
6 tháng 4 2017 lúc 9:21

-Min : quá dễ,đánh giá mẫu dương, tử ko âm từ đó min=0 ,đẳng thức xảy ra <=> x=0

-Max : A đạt max <=> 1/A đạt min

biến đổi về 1/A=7(1/x-5/14)2+3/28 >/ 3/28 => min của 1/A = 3/28 => maxA=28/3

đẳng thức xảy ra <=> x=14/5

Bình luận (0)

Các câu hỏi tương tự
NN
Xem chi tiết
H24
Xem chi tiết
TV
Xem chi tiết
NP
Xem chi tiết
HM
Xem chi tiết
SH
Xem chi tiết
VD
Xem chi tiết
SH
Xem chi tiết
LH
Xem chi tiết