Ta có : \(D=\frac{2x^2-6x+5}{2x}=x-3+\frac{5}{2x}\)
Áp dụng bất đẳng thức Cauchy , ta có : \(D=x+\frac{5}{2x}-3\ge2\sqrt{x.\frac{5}{2x}}-3=\sqrt{10}-3\)
Dấu "=" xảy ra \(\Leftrightarrow\begin{cases}x>0\\x=\frac{5}{2x}\end{cases}\) \(\Leftrightarrow x=\sqrt{\frac{5}{2}}\)
Vậy D đạt giá trị nhỏ nhất bằng \(\sqrt{10}-3\) tại x = \(\sqrt{\frac{5}{2}}\)
Bài này k xác định được GTLN bạn nhé.