TT

Tìm giá trị nhỏ nhất

a)A=4x2-4x+23

b)B=25x2+y2+10x-4y+2

H9
24 tháng 10 2023 lúc 8:11

a) \(A=4x^2-4x+23\)

\(A=4x^2-4x+1+22\)

\(A=\left(2x-1\right)^2+22\)

Mà: \(\left(2x-1\right)^2\ge0\forall x\)

\(\Rightarrow A=\left(2x-1\right)^2+22\ge22\forall x\)

Dấu "=" xảy ra:

\(2x-1=0\)

\(\Rightarrow2x=1\)

\(\Rightarrow x=\dfrac{1}{2}\)

Vậy: \(A_{min}=22\Leftrightarrow x=\dfrac{1}{2}\)

b) \(B=25x^2+y^2+10x-4y+2\)

\(B=25x^2+10x+1+y^2-4y+4-3\)

\(B=\left(5x+1\right)^2+\left(y-2\right)^2-3\)

Mà: \(\left\{{}\begin{matrix}\left(5x+1\right)^2\ge0\forall x\\\left(y-2\right)^2\ge0\forall y\end{matrix}\right.\)

\(\Rightarrow B=\left(5x+1\right)^2+\left(y-2\right)^2-3\ge-3\forall x,y\)

Dấu "=" xảy ra:

\(\left\{{}\begin{matrix}5x+1=0\\y-2=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}5x=-1\\y=2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{5}\\y=2\end{matrix}\right.\)

Vậy: \(B_{min}=-3\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{5}\\y=2\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
MN
Xem chi tiết
H24
Xem chi tiết
NA
Xem chi tiết
H24
Xem chi tiết
Xem chi tiết
HT
Xem chi tiết
LK
Xem chi tiết
H24
Xem chi tiết
NM
Xem chi tiết