Đặt \(A=\sqrt{x-4}+\sqrt{y-3}\)
Áp dụng BĐT: \(\sqrt{a}+\sqrt{b}\ge\sqrt{a+b}\)
\(\Rightarrow A\ge\sqrt{x+y-7}=2\sqrt{2}\)
\(A_{min}=2\sqrt{2}\) khi \(\left(x;y\right)=\left(4;11\right);\left(12;3\right)\)
Áp dụng BĐT \(\sqrt{a}+\sqrt{b}\le\sqrt{2\left(a+b\right)}\) (Bunhiacopxki):
\(A\le\sqrt{2\left(x+y-7\right)}=4\)
\(A_{max}=4\) khi \(\left(x;y\right)=\left(8;7\right)\)