Cho hàm số f ( x ) = x - m 2 x + 8 với m là tham số thực. Giả sử m0 là giá trị dương của tham số m để hàm số có giá trị nhỏ nhất trên đoạn [0;3] bằng -3. Giá trị m0 thuộc khoảng nào trong các khoảng cho dưới đây?
A. (2;5)
B. (1;4)
C. (6;9)
D. (20;25)
Để giá trị nhỏ nhất của hàm số y = x + 1 x - m trên khoảng (0;+∞) bằng –3 thì giá trị của tham số m là:
A. m = 11 2
B. m = 19 3
C. m = 5
D. m = 7
Để giá trị nhỏ nhất của hàm số y = x + 1 x - m trên khoảng 0 ; + ∞ bằng -3 thì giá trị của tham số m là:
A. m =7
B. m = 19 3 .
C. m = 11 2 .
D. m =5
Cho hàm số f(x)=(2 x +m)/(√x+1) với m là tham số thực, m>1. Gọi S là tập tất cả các giá trị nguyên dương của m để hàm số có giá trị lớn nhất trên đoạn [0;4] nhỏ hơn 3. Số phần tử của tập S là
A. 1
B. 3
C. 0
D. 2
Cho hàm số f(x)=3 sinx+2. Gọi S là tập hợp các giá trị nguyên của tham số m để hàm số y = f 3 ( x ) - 3 mf 2 ( x ) + 3 ( m 2 - 4 ) f ( x ) - m nghịch biến trên khoảng (0;π/2). Số tập con của S bằng
A. 1
B. 2.
C. 4.
D. 16.
Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn [-2017;2018] để hàm số y = 1 3 x 3 - m x 2 + ( m + 2 ) x có hai điểm cực trị nằm trong khoảng 0 ; + ∞ .
A. 2015
B. 2016
C. 2018
D. 4035
Cho hàm số y = - x 3 + m x 2 - ( m 2 + m + 1 ) x . Gọi S là tập hợp giá trị thực của tham số m sao cho giá trị nhỏ nhất của hàm số trên đoạn [-1;1] bằng -6. Tính tổng các phần tử của S
A. 0.
B. 4.
C. -4
D. 2 2
Có bao nhiêu giá trị nguyên của tham số thực m thuộc đoạn − 2018 ; 2018 để hàm số f x = x + 1 ln x + 2 − m x đồng biến trên khoảng 0 ; e 2
A. 2014
B. 2023
C. 2016
D. 2022
Có bao nhiêu giá trị nguyên dương của tham số m để hàm số y = m - sin x cos 2 x nghịch biến trên khoảng [0;π/6]?
A. 1.
B. 0.
C. 2.
D. Vô số.