Có: \(\left\{{}\begin{matrix}\left|x-\dfrac{1}{3}\right|\ge0\\\left|7y-1\right|\ge0\end{matrix}\right.\)
=> \(\left|x-\dfrac{1}{3}\right|+\left|7y-1\right|-1\ge-1\)
Dấu = xảy ra khi x = 1/3 và y = 1/7
Ta có: \(\left|x-\dfrac{1}{3}\right|\ge0\forall x\)
\(\left|7y-1\right|\ge0\forall y\)
Do đó: \(\left|x-\dfrac{1}{3}\right|+\left|7y-1\right|\ge0\forall x,y\)
\(\Leftrightarrow\left|x-\dfrac{1}{3}\right|+\left|7y-1\right|-1\ge-1\forall x,y\)
Dấu '=' xảy ra khi \(\left(x,y\right)=\left(\dfrac{1}{3};\dfrac{1}{7}\right)\)