ta có :
\(\sqrt{x^2+2x+1}+\sqrt{x^2+4x+4}=\left|x+1\right|+\left|x+2\right|\ge\left|x+1-x-2\right|=1\)
Dấu bằng xảy ra khi : \(\left(x+1\right)\left(x+2\right)\le0\Leftrightarrow-2\le x\le-1\)
ta có :
\(\sqrt{x^2+2x+1}+\sqrt{x^2+4x+4}=\left|x+1\right|+\left|x+2\right|\ge\left|x+1-x-2\right|=1\)
Dấu bằng xảy ra khi : \(\left(x+1\right)\left(x+2\right)\le0\Leftrightarrow-2\le x\le-1\)
1) Giải phương trình
\(x^2\)\(+2x+1=\left(x+2\right)\sqrt{x^2+1}\)
2) Tìm giá trị nhỏ nhất của biểu thức P=\(\sqrt{x^2-2x+13}+4\sqrt{x-3}\)
Tìm giá trị nhỏ nhất của biểu thức:
a) A = \(\sqrt{4x^2+4x+2}\)
b) B = \(\sqrt{2x^2-4x+5}\)
c) C = \(\dfrac{x-3}{\sqrt{x-1}-\sqrt{2}}\)
d) D = \(x-2\sqrt{x+2}\)
1) cho biểu thức A= \(\dfrac{x^2-\sqrt{x}}{x-\sqrt{x}+1}\) - \(\dfrac{2x+\sqrt{x}}{\sqrt{x}}\) + \(\dfrac{2.\left(x-1\right)}{\sqrt{x}-1}\) ( x>0; x ≠1)
a) Rút gọn biểu thức A
b) Tìm giá trị nhỏ nhất của 4
Cho −1≤x≤3. Tìm giá trị nhỏ nhất của biểu thức: A=\(\sqrt{-x^2+4x+12}-\sqrt{-x^2+2x+3}\)
tìm giá trị nhỏ nhất của biểu thức: D=\(\sqrt{3+2x\sqrt{3}+x^2}+\sqrt{x^2-x+\frac{1}{4}}\)
Cho biểu thức: Q = \(\left(\frac{2x\sqrt{x}+x-\sqrt{x}}{x\sqrt{x}-1}-\frac{x+\sqrt{x}}{x-1}\right)\frac{x-1}{2x+\sqrt{x}-1}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)với \(x\ge0,x\ne\frac{1}{4}v\text{à}x\ge1\)
1) Rút gon Q
2) Với giá trị nào của x thì biểu thức Q đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất đó.
Giúp mik vs
Tìm giá trị nhỏ nhất của biểu thức,
A=\(\sqrt{4x^2+4x+2}\)
B=\(\sqrt{2x^2-4x+5+1}\)
Tìm giá trị lớn nhất của biểu thức
M=\(-5+\sqrt{1+9x^2+6x}\)
tìm giá trị lớn nhất,giá trị nhỏ nhất của biểu thức sau:
a A= \(\sqrt{x-4}+\sqrt{5-x}\)
b B= \(\sqrt{3-2x}+\sqrt{3x+4}\)
tìm giá trị nhỏ nhất của biểu thức
\(\sqrt{x^2+4x+4}+\sqrt{x^2-6x+9}\)