Có D = |x^2 +x+3 | + |x^2 +x-6| = |x^2 +x+3 | + |-x^2 - x + 6 |
Ta co: D = |x^2 +x+3| +|-x^2 -x + 6 | \(\ge\)| x^2 + x + 3 - x^2 - x + 6 |
D \(\ge\)|9 | = 9
D nhỏ nhất chỉ khi D=9
Vậy 9 là giá trị nhỏ nhất của biểu thức D = | x^2 +x+3| + | x^2 + x - 6 |
\(\left|x^2+x+3\right|+\left|x^2+x-6\right|\)
\(=\left|x^2+x+3-x^2-x+6\right|\)
\(\ge9\)