\(A\ge\left|3x+2+2018-3x\right|=2020\)
Lời giải:
Áp dụng BĐT dạng $|a|+|b|\geq |a+b|$ ta có:
$A=|3x+2|+|3x-2018|=|3x+2|+|2018-3x|$
$\geq |3x+2+2018-3x|=2020$
Vậy GTNN của $A$ là $2020$. Giá trị này đạt tại $(3x+2)(2018-3x)\geq 0$
$\Leftrightarrow -\frac{2}{3}\leq x\leq \frac{2018}{3}$