Ta có: y = − 2 x 2 + 4 x = − 2 ( x − 2 ) 2 + 2 2 ≤ 2 2
⇒ y max = 2 2
Ta có: y = − 2 x 2 + 4 x = − 2 ( x − 2 ) 2 + 2 2 ≤ 2 2
⇒ y max = 2 2
Tìm giá trị lớn nhất của hàm số sau trên [-1; 1]
A. max y = 0 B. max y = 2
C. max y = 4 D. max y = 2
cho x,y dương thỏa mãn: \(\dfrac{1}{x}+\dfrac{1}{y}=2\)
tìm Max \(A=\dfrac{1}{x^4+y^2+2xy^2}+\dfrac{1}{y^4+x^2+2yx^2}\)
cho \(x^2+y^2=xy+1\) tìm max của \(x^4+y^4-x^2y^2\)
hộ vs ạ
Cho 0≤x,y,z≤1
Tìm max \(D=\sqrt{\dfrac{x}{1+yz}}+\sqrt{\dfrac{y}{1+zx}}+\dfrac{z}{2+2xy}\)
Cho x2+y2\(\le\)2x+4y. Tìm min và max của F=2x+y
Cho x,y không âm thỏa mãn \(x^3+y^3+x^2y+y^2x-2x^2-2y^2+x+y-2=0\)
Tìm Min Max của \(A=x^2y^2-4xy\)
cho x,y,z nguyen duong thoa man: \(\left\{{}\begin{matrix}\left|x-2y\right|\le\dfrac{1}{\sqrt{x}}\\\left|y-2x\right|\le\dfrac{1}{\sqrt{y}}\end{matrix}\right.\)
tim Max \(A=x^2+2y^2\)
+) Tìm min
\(E=\dfrac{1+\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}}{xy+yz+zx}\)
+) Tìm max và min
\(F=\dfrac{a-b}{c}+\dfrac{b-c}{a}+\dfrac{c-a}{b}\)
Trong đó a,b,c>0 và \(min\left\{a,b,c\right\}\ge\dfrac{1}{4}max\left\{a,b,c\right\}\)
Gọi M,m lần lượt là giá trị lớn nhất , giá trị nhỏ nhất của hàm số y=\(\sqrt{1+x}+\sqrt{1-x}\). Giá trị của M+m là
A.4 B.2+\(\sqrt{2}\) C.4+\(\sqrt{2}\) D.2
Gọi M,m lần lượt là giá trị lớn nhất , giá trị nhỏ nhất của hàm số y=\(\sqrt{1+x}+\sqrt{1-x}\). Giá trị của M+m là
A.4 B.2+\(\sqrt{2}\) C.4+\(\sqrt{2}\) D.2
Giải thích hộ em với